
MINIMAL RELATIONS FOR CERTAIN FINITE p-GROUPS 

BY 

D. L. JOHNSON AND J. W. WAMSLEY 

ABSTRACT 

It is an open question whether or not every finitep-group G has a presentation 
with d(G) -~ dim HI(G,Zp) generators and r(G) = dim HZ(G, Zp) relations; 
in this article, a large number of examples are given to show that such a presen- 
tation does exist for nearly all such groups for which r(G) has been calculated. 

0. Introduction. Let G be a finite p-group having a minimal generating set 

{x 1 , . . . ,x .}  so that,  by the Burnside Basis Theorem,  n = d(G) is an invariant 

o f  G. I f  F is the free group on generators yl ,  . . . , y , ,  we have a free presentation 

o f  G with kernel R:  

(1) 1 -~ R -~ F ~ G ---r 1 

where ylrc = x~, 1 < i _< n. Let r'(G) (r~(G)) be the smallest number  o f  elements 

o f  R (R/R'R p) which together with their conjugates generate R (R/R'RV); then 

r'=(G) >= r~(G), and r~(G) is the smallest number  o f  relations required to define 

G in terms o f  x 1, --., x , .  Further,  it is well known (see I-3]) that  

d(G) = d imHa(G,  Zp), 

r~(G) = dim H2(G, Zp), 

and thus r~(G) = r(G) is an invariant o f  G with r(G) > d(G). 

Problem 1. Is r',(G) an invariant o f  G? 

We avoid this problem by defining r'(G)= min~ r'(G), so that  

(2) r'(G) > r(~) > d(G), 

and concern ourselves with the following question. 

Problem 2. Fo r  which groups G is r'(G) = r(G)? 
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Both these problems appear on p. 103 of [3] and, while the latter has been 

solved for profinite p-groups [12] where the conjectured equality is always true, 

it is still an open question in the case in hand. 

Writing G = R ¢~ F'/[F, R] in accordance with (1), G is an invariant of G 

called the Schur multiplicator, and we know that 

d(G) = r(G) - d(G). 

As a special case of problem 2 we can ask (see [11]): 

Problem 3. If  d(G) = 0, is it true that r'(G) = r(G)? 

The following well-known improvement of  the famous theorem of  Golod- 

Safarevi~ [2-] is proved in [3, p. 104]. For G a finite p-group, 

(3) r(G) > d(G)2/4 

Now define Gp to be the class of all finite p-groups G such that r'(G) = r(G); 

then our aim in this article is to prove, with several interesting exceptions, that 

Gv contains all those groups G for which r(G) has been calculated, and to this 

end the exposition is divided up into seven sections. As additional motivation, 

we briefly discuss an application of the above ideas to extension theory. 

Let G ~ Gv be a group having a minimal presentation 

G = ( x l , " "  ,x  n [ r l , " "  , rs) , 

the r~ being words in the Xj'S (the equating of each of which to 1 gives a set of 

defining relations for G), so that n - - d ( G ) ,  s = r ' ( G ) =  r(G). We write 

V~(K) = {(~1, "", ~,) [ ~i ~ K ,  1 _< i _< s}, the m-dimensional vector space over 

the field K of  p elements, Z v = (y  I Yg), and G = HZ(G, Zv), the group of  (neces- 

sarily central ) extensions of G by Z v. Thus, G may be identified with V~(K). We 

now define a mapping 

~: V~(K) -o (~ = V~(K) 

by asserting that ("1,"" "s)~ = the equivalence class of extensions containing the 

group 

( x l ,  ...,x~, y l r~y -~1, . . . ,r ,y - ~  , [xl, y], . . . ,[xn,y],  yV),  

which is easily seen to be K-linear and bijective. Using the main result of [18], 

this construction can be generalised to any finite p-group G. 

The following two assertions are immediate consequences of these remarks. 
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a) d((~l,'-',as)~) is equal to n + 1 if ( a l , ' " ,  as) = 0, and is equal to n other- 

wise. 

b) if [G I = pk, then G has a presentation with k generators and k(k + 1)/2 

relations. 

Turning momentarily to arbitrary finite groups, we can ask the question: 

Problem 4. Which finite groups G have presentations with d(G) generators 

and d(G) + d(G) relations? 

Denoting this class of groups by G, let Gk be the split extension of the direct 

product of k copies of Z 7 by the 'squaring' automorphism (of order 3); then it 

is shown in [14] that G k does not belong to G for k > 3, even though [Gkl = 1. 

However, presentations are given in [20] for the groups PSL(2,p), p > 3, with 

two generators and three relations, and it is known [13] that d(ffSL(2,p)) = 1 

for p odd. Hence, all these groups lie in G. (Of course, 

PSL(2, 2) = <x, y [ xZy- 3, y , y -  2) e G). 

1. Groups with r '  = d. We consider groups G with r' = d. By (2), all such 

groups are in Gp. 

d(G) = 1. This class coincides with the class of cyclic groups: 

c = < x l x r > .  

d(G) = 2. The only examples we know of  such groups are certain metacyclic 

groups and a class of groups 

G(c~,fl) = <x, y l[x ,z]  = x p', [y,z +-I] = yP", Ix, y] = z±l> 

given in [8] and [16]. 

Problem 5. What other groups are there with r '  = d = 2? 

d(G) = 3. The only examples known to us here are the groups 

= <x, y, z ] [x,  y] = x 2, [y, z] = y2, [z, x]  = z2>, 

G2 = <x,y, z l [x , y  ] = x-Z,[y,z] = y-Z, [z,x] = z-25 

due to Mennicke [91, and 

G3 = < x , y , z } [ x , z ]  = x z , [ x , y ]  = z 2 , [ z - l , y - ' ]  = yZ>, 

G4 = < x , y , z [ [ x , z ]  = x  2 , [ x , y ]  = z  2 , [ y , z ]  = y 2 > ,  

Gs = <x,y ,  z l [ x , z  ] = x -a ,  [ z - l , y  - 1 ]  = y-a,  Ix ,  y ]  = za>, 

G 6 = < x , y ,  z l [ x , z  ] = x -3  , [ y , z ]  = y - a ,  [ x , y ]  = z 3 > ,  

dealt with in [16]. 
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The cases r'(G) = d(G) = s for s > 4 are precluded by (2) and (3) above. 

Problem 6. Does there exist a finite p-group G with r'(G) = 5 and d(G) = 4? 

A likely one might be 

G = <a, b, c, d[ [a, b] = a 2, [b, c] = b 2, [c, d] = c z, [d, a] = d 2, [a, c] = [b, d]>, 

which, if finite, must be a 2-group and so in G2, by (2) and (3). 

We first observe (see [7]) that 

d(G x H) = d(G) + d(H), 

r(G x H) r(G) + r(H) + d(G)d(H). 

G = <XIR>, H =  <Y[S>, 

then, regarding G and H as subgroups of G x H in the usual way, 

G x H = (X,  YIR, S ,[X,Y]>,  

so that: 

r'(G x H) ~= r'(G) + r ' (H) + d(G)d(H). 

It follows from this formula, together with (2) and (4), that: 

G,H~Gp =~ G x H~Gp.  

Thus, with the aid of  the case d(G) = 1 of  section 1, we see that Gp contains 

all finite abelian p-groups. 

As to the closure of  Gp under the formation of direct factors, very little can 

be said; even the following question, posed by R. A. Walton, is by no means 

an easy one. 

Problem 7. I f  G, G x H ~ G p ,  does it follow that H~Gp? 

3. Dihedral groups and their extensions by Z2. The values of  r for such groups 

have been found by Munkholm, [i0],  and we merely check that all the groups 

in question lie in G 2 . We define the dihedral group of  order 2" as follows: 

D, = <x, yly2"-~ = x z = (yx)2 = 1>, n > 2, 

whence it is clear that d(Dn) = 2, r'(Dn) = 3 for all admissible values of  n. We 

obtain the extensions of Dn by ZE = <a [ aZ> by using the mapping ff of  section 0 

to construct the following table (n > 3): 
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Group y2"- t = x2 = 0'X) 2 = __----- d r 

GI 1 1 i Z2× D. 3 6 

G2 1 l a ) 2 4 

G3 I a I 2 4 

G4 I a a 2 3 

G5 a 1 1 D ,+I  2 3 

G6 a 1 a ) 2 2 

G7 a a 1 2 2 

Gs a a a Qn+l 2 2 

where Q,~+I is the generalised quaternion group of  order  2 "+1" 

Q.+I = <x, yIY 2"-~ = x 2 = ( Y X ) ~ > ,  n > 2 .  

Since the mappings 

cOl: G 2 --* G3,c02:G6 --~ G7, 

given by coi(a) = a ,  cOi(Y) = Y, coi(x) = y x  (i = 1, 2), are isomorphisms and 

Gx, Gs, Gs have already been dealt with there remain only three cases: 

G3 = < x , y , a  y2 . -1  = 1 = (yx) 2, x z = a ,  Ix, a ]  = [y, a ]  = a s = 1> 

= < x , y ] y  2"- '  = 1 = ( y x )  2 ,  x 4 = i = [ y ,  x 2 ] ) ,  

which shows immediately that  G3 ~ G2.  

G 4 = < x , y , a ] y Z " - '  = 1, x a = a = ( y x )  2, Ix, a ]  = [ y , a ]  = a 2 = 1> 

< x , y ] y 2 " - '  = I ,  x 2 = (yx) 2, [ y , x  2 ]  = x 4 = i ) ,  

and since the relation [y, x 2] = 1 can be deduced f rom x 2 = (yx) 2, it must  be 

superfluous, and we have a presentation o f  the desired type. 

[ -1 G 6 =  < x , y , a  y2- = a = ( y x )  2, x 2 =  [ x , a ]  = [ y , a ]  = a 2 = 1> 

- 1 r 2 n -  1-1 = < x , y  2 2" ---- X 2 = 1, (yx) 2 = y2- , Lx, y J = 1 ) .  

r 2 n -  1 
First note that  the relation L x, y ] = 1 can be deduced f rom the other three, 

and then that  the resulting presentat ion is shown in [11] to  yield the group 

2. - l y , . - ~ - ,  x y2°-2+x>. < x , y [ y  = x 2, x = 

4. Groups of  order pa. There is only one case outstanding,  namely  that  o f  

the group o f  order  p 3 (p odd) given by 
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= <x, y l x"  = /  = Ix,y]  p = [ [x ,y ] , x  I = [[x, Yl, y I = 1),  

(the others being treated above or in [11]), for which r(G) = 4, (see [6]). It is 

easily seen that the relation Ix, Yl P=  1 follows from the other four, so that G 

is in Gp as required. 

Note that there can be at most two groups of order 16 outside t72 , by the re- 

sults of sections 2 and 3 (and also [11]); we hope to consider groups of orders 

p4 and pS in a future article. 

4. Wreath products. Let G and H be p-groups and consider the extension 

(split by s) 
1 --+ G x G x . . . x G  & G ~ H - ~ H  ~ 1, 

k.__ • 
. c -  

and regard G and H as subgroups of  the standard wreath product G ~ H via the 

embeddingsgl~  (g, 1, ...,1)i and hl-~ hs respectively. Then it is not difficult to 

show (see [51) that if G = ( x l R )  and H = ( Y  IS> then 

(5) G , H  = <X, YIR,S,[X, XA1> 
where A is any subset of H having the property that H \{1} = A U A  -1. Now 

if  p is odd, we can find such an A with I11 - and it is proved in [5] 

that if 
Ixl =d(G), [ R I = r ( G ) ,  [Y[ = d ( H ) = [ S [ ,  

then r(G ~ H) = r (G) + r(H) + l ( h -  1)d(G) 2, precisely the number of relations 

in (5) in this case, (of course, d(G ~ H) = d(G) + d(H) in general). Thus we can 

assert that, for odd p, the class Gp contains the standard wreath product of two 

of its members, provided that the second factor has trivial multiplicator. (Note 

that this result is improved in [19], where it is shown that each Gp is closed under 

general wreath products; however, the presentation is too complicated to give 

here). 

For example, denote by G n the Sylow p-subgroup of the symmetric group on 

pn letters, n > 1, Go = {1}. Then for all n >_- 1, Gn -~ Gn-1 ~ Z, ,  and we deduce 

from the above remarks that (for odd p): 

d(G,) = n, r(G,) = r'(G,) -= n + -]-2( p -  1 ) ( n - 1 ) n ( 2 n - 1 ) ,  n > 1, 

which agrees with a result of Boga6enko [11. Since the Sylow p-subgroup of an 

arbitrary symmetric group is just a direct product of various G,'s, we can assert 

that for odd p Gp contains the Sylow p-subgroup of any finite symmetric group. 
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6. Exteasions of  ab~lian g r ~ p ~  by eyelie groaps,  Let  H be a cyclic group  

and K an abelian g roup  and G an extension o f  K by H :  

I ~ H ~ G ~ K ~ I .  

Then we say the extension is outer  if  d(G) = d(K)  + d (H) .  In  this case G has a 

presentat ion 

G = <x, al,  " " , a .  Ix ~, -iath~-~-- , aixa? lx-°~, a ja ia j - l a? l x -ZJ i> ,  

where 1 < i < j  < n and 7i, 6i - 1, ~i, c~ and 2ji are zero modu lo  p;  then it can 
be shown (for  example,  by the methods  in [15]) that  

n 2 + 3n 
r(G) - ~ + e,  

where e = 0 i f  p divides each of  the following: 

(1) ( 6 ~ ' -  1)/~, 1 -< i < n, 

(2) 7i (6~-  1)/e, 1 < i < n,  

(3) { )9 i (6 f '  - 1)/(5j - 1) + ?j(6 i - 1)}/a, 1 __< i < j =< n,  

(4) at {).j,(~3 i - 1)/(6 i - 1) + ?/(1 - 6j)}lc~, i < i < j < n,  

(5) {2gi(1 - 6 j )  "4- , '] , j i( t~k - -  1) + , ~ k j ( 6 i  - -  1)}/c~, 1 < i < j < k < n,  

and e = 1 otherwise. As a consequence,  we deduce the following 

THEOREM. I f  every outer extension of  an abelian group K by a cyclic group 

H with d(K)  < 3 belongs to Gp, then every outer extension of  an abelian group 

by a cyclic group belongs to Gp. 

PROOF. Assume n > 3. I f  e = 1, there is nothing to prove.  In  the case e = 0,  

there is a triple i, j ,  k such that  the subgroup  J generated by x ,  al, a j ,  ak has 

r(d) = 9, and if J E Gp then this presentat ion can be extended to a presentat ion 

o f  G with ( n Z +  3n)/2 relations. 

The  case n = 1 is dealt  with in [17], where it is shown that  every outer  extension 

o f  a cyclic group  by a cyclic group belongs to Gp; for  the cohomology  o f  these 

groups,  see [4], [15]. 

7. Examples of groups which may not belong to Gp. Let G be a three-genera tor ,  

three-relat ion group  with d(G/G')  = 3. Fo r  example,  let G be the Mennicke group  

G = <x, y, z I Ix,  y]  = x p, [y,  z] = y ' ,  [z, x]  = z ' > ,  

and let G p stand for  the m a x i m u m  p-fac tor  g roup  o f  G; in our  example,  
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G" = ( x ,  y, z I Ix, y] = x"  [y, z] = y ' ,  [z, x] = z ' ,  x '2y '2z  "2 = 1 ) .  

Then G p has  t r ivial  mul t ip l i ca to r  for  p > 3, while there are  no ' k n o w n '  three- 

genera tor ,  three- re la t ion  p-groups  for  p > 3, and  so one arr ives at  an example  

o f  a p -g roup  which may  or  may  no t  be long to Gp. (Note  tha t  [18] shows tha t  

G p has  three re la t ions  m o d u l o  R ' ,  where G = F / R ,  but  as yet  we have no t  been 

able  to de te rmine  these either).  
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